Alpha-chlorofatty acid accumulates in activated monocytes and causes apoptosis through reactive oxygen species production and endoplasmic reticulum stress.

نویسندگان

  • Wen-yi Wang
  • Carolyn J Albert
  • David A Ford
چکیده

OBJECTIVE Myeloperoxidase-enriched monocytes play important roles in inflammatory disease, such as atherosclerosis. We previously demonstrated that α-chlorofatty aldehydes are produced as a result of plasmalogen targeting by myeloperoxidase-derived hypochlorous acid in activated monocytes. Here, we show α-chlorofatty acid (α-ClFA), a stable metabolite of α-chlorofatty aldehydes, accumulates in activated monocytes and mediates the molecular effects of α-ClFA on monocytes/macrophages. APPROACH AND RESULTS Liquid chromatography-mass spectrometry revealed that α-ClFA is elevated 5-fold in phorbol myristate-stimulated human monocytes rising to ≈20 μmol/L when compared with unstimulated cells. Using human THP-1 monocytes and RAW 264.7 cells as in vitro models, we tested the hypothesis that α-ClFA is a cell death mediator that could potentially participate in pathophysiological roles of monocytes in diseases, such as atherosclerosis. Indeed, 2-chlorohexadecanoic acid, the 16-carbon molecular species of α-ClFA, caused significant apoptosis of primary monocytes. Similarly, 2-chlorohexadecanoic acid also caused apoptosis in THP-1 human monocytes and RAW 264.7 mouse macrophages as determined by annexin V-propidium iodide staining and terminal deoxynucleotidyl transferase dUTP nick end labeling staining, respectively. 2-Chlorohexadecanoic acid treatment also increased caspase-3 activity and poly (ADP-ribose) polymerase cleavage in THP-1 cells. 2-Chlorohexadecanoic acid likely elicits apoptosis by increasing both reactive oxygen species production and endoplasmic reticulum stress because antioxidants and CCAAT/enhancer-binding protein homologous protein block such induced cell apoptosis. CONCLUSIONS The stable chlorinated lipid, α-ClFA, accumulates in activated primary human monocytes and elicits monocyte apoptosis through increased reactive oxygen species production and endoplasmic reticulum stress, providing a new insight into chlorinated lipids and monocytes in inflammatory disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions

Objective(s): Non-alcoholic steatohepatitis (NASH) is defined by steatosis and inflammation in the hepatocytes, which can progress to cirrhosis and possibly hepatocellular carcinoma. However, current treatments are not entirely effective. Allantoin is one of the principal compounds in many plants and an imidazoline I receptor agonist as well. Allantoin has positive eff...

متن کامل

Carnosic Acid Induces Apoptosis Through Reactive Oxygen Species-mediated Endoplasmic Reticulum Stress Induction in Human Renal Carcinoma Caki Cells

BACKGROUND Carnosic acid, which is one of extract components of rosemary, has anti-inflammatory, anti-oxidant, and anti-cancer effects. However, the anti-cancer effect of carnosic acid in human renal carcinoma cells is unknown. METHODS Flow cytometry analysis was used to examine the effects of carnosic acid on apoptosis, and Asp-Glu-Val-Asp-ase activity assay kit was used to investigate the i...

متن کامل

Reactive Oxygen Species, Apoptosis, and Mitochondrial Dysfunction in Hearing Loss

Reactive oxygen species (ROS) production is involved in several apoptotic and necrotic cell death pathways in auditory tissues. These pathways are the major causes of most types of sensorineural hearing loss, including age-related hearing loss, hereditary hearing loss, ototoxic drug-induced hearing loss, and noise-induced hearing loss. ROS production can be triggered by dysfunctional mitochondr...

متن کامل

Sialic acid rescues repurified lipopolysaccharide-induced acute renal failure via inhibiting TLR4/PKC/gp91-mediated endoplasmic reticulum stress, apoptosis, autophagy, and pyroptosis signaling.

Lipopolysaccharides (LPS) through Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4) activation induce systemic inflammation where oxidative damage plays a key role in multiple organ failure. Because of the neutralization of LPS toxicity by sialic acid (SA), we determined its effect and mechanisms on repurified LPS (rLPS)-evoked acute renal failure. We assessed the effect of intravenou...

متن کامل

Nitric oxide and endoplasmic reticulum stress.

Nitric oxide (NO) is a multifunctional biomolecule involved in a variety of physiological and pathological processes, including regulation of blood vessel dilatation and anti-arteriosclerotic effects. However, a large amount of NO is toxic to the host and causes several diseases such as apoptosis, septic shock, and diabetes mellitus. Inducible-form NO synthase is induced in inflammatory disease...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 34 3  شماره 

صفحات  -

تاریخ انتشار 2014